
WHITEPAPER

Building an Operational
Data Warehouse for
Real-Time Analytics
Are you pushing your data warehouse to its
limits supporting near-real-time scenarios?
There’s a better way.

Have you ever tried driving real-time updates to customers from your data warehouse?
Or optimized a conversion funnel using real-time data? If so, you’ve probably suffered
the pain of pushing your data warehouse past its limits.

Analytical data warehouses are now ubiquitous in every company’s data workflow. But the
data warehouse was designed to provide historical insights. Even the most modern data
warehouses struggle to deliver data quickly and efficiently for near-real-time use cases.

Fortunately, there’s an alternative. This white paper gives an overview of the operational data
warehouse, how it works, and why it delivers better cost/performance for near-real-time use
cases than an analytical data warehouse solution.

How analytical and operational
data warehouses differ
The data warehouse exists to provide historical insights across many disparate sources of data. You have
data in your OLTP databases - your sources of truth. But you also have SaaS products, events, logging
exhaust, and a multitude of other data sources.

All of this data is relevant, valuable, and actionable. But none of these sources know how to play nice
with each other. They all feed into your warehouse because that’s the only place you can easily bring
all this data together.

The data warehouse combines data you couldn’t jointly query otherwise. However, the batch-oriented
operation of traditional data warehouses ensures significant tradeoffs in latency, freshness, and accuracy.

Analytical vs. operational workloads
These trade-offs don’t matter for a large class of work. These are our analytical workloads, where we
grind through reams of historical data and efficiently produce periodic reports. Traditional analytical data
warehouses handle these workloads well.

Analytical workloads are different from operational workloads, which facilitate the day-to-day operation
of your business.

To simplify things, most operational work can be generalized as automated interventions in the business.
For instance, a bank may process data as it is created to find fraud. If an operational system goes down for
the day, it usually means you’re forced to offer degraded service or even stop work completely.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 2

https://www.techtarget.com/searchdatacenter/definition/OLTP

You can think of the difference between analytical and operational workloads in terms of time spans.
Analytical workloads are any workloads that work off of historical data that’s anywhere from a day to
years old. By contrast, operational workloads work off data from the past month or two, including data
that may have just arrived in the past few milliseconds.

The analytical data warehouse lacks several features that are critical for operational work:

 X It’s not always up to date, because data is ingested in batches over time.

 X It’s not always immediately responsive, as every individual query requires computation from scratch.
Even data warehouses that utilize indexes or materialized views must be updated periodically.

 X Its content is not always consistent, and must be manually refreshed by different tools or teams.

Fundamentally, the analytical data warehouse wasn’t designed for operational work. This hasn’t stopped
people from using their analytical data warehouse for real-time data. But, the closer to real-time the use case
becomes, the more challenging and cost-prohibitive batch updates, view maintenance, and indexing become.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 3

Analytical workloads Operational workloads

Business intelligence exploration Internal/external alerts & notifications

Ad-hoc exploratory analysis of metrics Customer segmentation

KPI dashboards Dynamic pricing & recommendations

Prototyping & exploring hypothetical scenarios Business automation & workflows

Executive dashboards and reporting Online feature serving for ML & AI

The operational data warehouse
What if you had a data warehouse built for operational workloads? One where:

 X Data is ingested continually, and is immediately available to query

 X Analytical views are continuously updated and always consistent

 X Updated results are seamlessly communicated to downstream systems that can react immediately

In other words, what if you could run operational workloads efficiently out of a data warehouse?

Architecturally, an operational data warehouse sits just upstream of your conventional analytical
data warehouse. It receives data as changes happen and can transform, normalize, and enrich
data as it lands.

An operational data warehouse can immediately update maintained views & indexes while informing
downstream dependencies. It can then promptly respond to ad-hoc queries against up-to-date data.

Of course, you’ll need your analytical data warehouse for historical queries and traditional reporting.
The operational data warehouse can help here too, replicating your normalized and enriched data to an
analytical data warehouse for longer-term storage and analysis. When appropriate, it can retire old data
from the operational store.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 4

Use cases for an operational
data warehouse
If you’re currently leveraging your analytical data warehouse for any of the following use cases,
chances are you could achieve superior performance with lower cost and effort by shifting to
an operational data warehouse.

Hallmarks of an operational
data warehouse
To support operational data workloads, an operational data warehouse must have four fundamental
attributes: trust, scale, ease of use, and cost-effectiveness.

Because streaming technologies are often complicated and built-for-purpose, a good operational data
warehouse needs to be built to support and deliver data from streams out of the box. This means you
can benefit from streamed data without creating bespoke tools to utilize it. Streaming can become an
implementation detail rather than a product category.

Trust
Trust consist of interactivity, freshness, and consistency. To exhibit trust, an operational data
warehouse must be:

 X Responsive, minimizing the time between an operational ask and its completion

 X Up to date, immediately reflecting updates to your data as soon as they happen

 X Consistent, presenting answers and taking actions that always check out

These properties combine to make an operational data warehouse a trusted surrogate data operator.

Real-time analytics
An operational data warehouse
can receive changes in near-
real-time and update the
corresponding views and
indexes immediately. This
enables supporting scenarios
that depend on real-time
processing, such as status
updates from field service
personnel or IoT devices, or data
received from customer-facing
applications.

Example: Real-time delivery
notification updates

Automation and alerting
Because data is always fresh in
an operational data warehouse,
you can more easily perform
automation and alerting tasks
by transforming incoming data
via SQL and reacting to changes
via event-driven triggers. This
opens up use cases such as risk
scoring on transactions, fraud
and anomaly detection, and
monitoring of devices.

Example: Reducing shopping
cart abandonment

Segmentation and
personalization
Using real-time data and user
behavior, you can support on-
the-fly customization of user
experiences, including product
recommendations, dynamic
pricing, and in-app promotions.

Example: Dynamic decision-
making with real-time customer
data models

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 5

https://materialize.com/customer-stories/onward/
https://materialize.com/customer-stories/onward/
https://materialize.com/customer-stories/drizly/
https://materialize.com/customer-stories/drizly/
https://materialize.com/customer-stories/superscript/
https://materialize.com/customer-stories/superscript/
https://materialize.com/customer-stories/superscript/

Ease of use
An operational data warehouse should be simple to understand and use. Data arrives and is presented
as continually changing tables, over which you use SQL to frame views describing your business logic.
You then build indexes that provide ready access to fresh results on top of that.

An operational data warehouse works hard in the background to keep these views current. You experience
this only through surprisingly prompt and fast access to indexed view contents. Interactive query results
come back in strict serialized order as if all were executed in order one at a time. That avoids the otherwise
complex application logic you would need to avoid tripping over inconsistent results.

Cost-effectiveness
One of the reasons cloud analytical data warehouses took off is that they significantly drove the costs
down for pay-per-query analytics. They did this by optimizing query execution for analytical workloads
and utilizing the scalability of the cloud to fit compute resources to workloads.

However, the flip side is that operational workloads on analytical data warehouses don’t perform
as well. The more transforms required to update incoming data, the worse that standard data
warehouse engines tend to perform.

An operational data warehouse addresses this by decoupling cost and freshness. Analytic data
warehouses rely on the user to decide the frequency at which a batch transformation query should
be recomputed and cached, with more frequent updates coming at the cost of increased complexity
and compute usage.

By contrast, an operational data warehouse takes the same SQL and parses it into a dataflow that
incrementally maintains the results as the input data changes - bit by bit, rather than everything at once.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 6

Why teams remain stuck on
analytics data warehouses
If analytical data warehouses aren’t the best way to run operational workloads,
why do we use them for that purpose?

We asked our own customers. Here’s what we heard back.

 The data warehouse is often the first
place data can be joined
Because operational source data comes
from multiple systems, the analytical value
is realized by joining those disparate data
sources. I.e., when we see this signal and
this other signal, we know we need to take
this action. If the two signals arrive from
a Software as a Service (SaaS) application
and your transactional database, joining
the two sources in application logic can get
complicated.

In contrast, a single data engineer can set
up the loading and integration of data once
(sometimes via a few clicks in Fivetran). After
that, other teams rarely have to come back with
change requests to the pipelines. They just work
autonomously in the warehouse, in SQL.

It’s appealing to stretch that model to cover
operational work.

 The SQL that analysts write
lives after them
The warehouse is where data analysts and
analytics engineers prototype their SQL
code. Many operational use cases start with
a hypothesis, which we then validate with
data. The correct place to do that is on your
historical data in your cloud data warehouse.

So data teams find themselves with a fully
prototyped use case wondering: how do I get
the data out of the warehouse and into my
operational tools? The default response is to
keep that logic where it is, for simplicity rather
than operational effectiveness.

 The data warehouse centralizes
complex business logic
Keep in mind that this isn’t a “SQL vs code”
decision. It’s often a “SQL vs opaque point
and click integrations” or “SQL vs microservices
without clear owners” decision. Operational
workloads are often hidden in glue code, API
configuration, and scripts whose creators have
long since left the company.

SQL - especially SQL tracked in git repos
and organized in dbt projects - is the most
accessible alternative. Since SQL is the
language of the data warehouse, business
logic can reside there with reduced effort.

 It unlocks Software Development
Lifecycle (SDLC) best practices
Dev/stage/prod workflows, automated
tests, change review via pull requests, CI/
CD, centralized logging - all these things
are becoming central to the way modern
data teams manage a growing scope of
responsibility. All of these tasks are simplified
in a modern data warehouse.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 7

https://getdbt.com/

The analytical data warehouse can
serve many needs, but it falters
with operational workloads
Reverse ETL tools like Census and Hightouch are evidence that others can succeed running some amount
of operational work on an analytical data warehouse. But, over time and with scale, problems develop.

Here’s why people try to run operational data in the analytical data warehouse - and how it turns around
to bite them.

 The data size frog is boiled slowly
Companies leverage “modern data stack”
tooling to tackle historical analytics workloads.
Since warehouses have lowered the entry-
level cost to make themselves viable even
for smaller businesses, many are starting this
journey earlier and earlier.

Operational workloads can be tempting to run
in an analytical data warehouse early on. This
is due to the small scale of data involved and
the temptation to use existing infrastructure.
However, data freshness becomes a problem
as datasets grow and the ETL pipeline
stretches from minutes to hours.

 It’s possible to throw money
at the problem
Initially, companies can pull (expensive)
levers in the warehouse to keep up with
operational requirements. They can load
data and run their dbt pipelines more
frequently, upgrade the resources dedicated
to processing, and generally spend more to
alleviate freshness issues.

We spoke to a company that prototyped fraud
detection logic in their warehouse. Initially,
this was workable. They loaded data every 30
minutes. The query took 5 minutes. However,
as they grew, the data compounded until the
query took more than 30 minutes to complete.
Eventually, they were running compute
24 hours a day just to deliver stale fraud-
detection data at hourly intervals.

 It’s possible to throw (engineering)
time at the problem
As a last resort, there are upfront pipeline
optimizations that can be done on analytical
data warehouses. But they gain performance
through ever-growing complexity.

dbt has a useful solution for lowering the
amount of data you work over: incremental
models that let you specify logic to merge only
the changed rows. Unfortunately, this requires
rewriting your SQL, handling new concepts like
late-arriving data, and essentially defining an
entire lambda architecture in SQL, with all its
associated pitfalls.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 8

https://www.getcensus.com/
https://hightouch.com/

Why analytical data warehouses hit limits with operational workloads
Ultimately, serving operational workloads out of a data warehouse is a dead end.
There are a few reasons for that.

Materialize: The real-time
operational data warehouse
We designed Materialize
to solve these issues for
operational workloads.

Materialize takes the same
strengths of analytics data
warehouses: (1) ELT of
streaming data with cheap
scalable object storage, (2) on-
demand scaling with compute
isolation, (3) compatibility with
SDLC workflows. As with data
warehouses, you manage these
all via the same SQL control layer.

 A batch/orchestrated query model
Somewhere deep in the bowels of a datacenter,
servers are repeatedly pulling your entire
universe of business data out of object
storage, running a massive computation on
it, and caching the result. The servers do the
same work every time, even when only a few
rows of input and output data change.

You can optimize this through the complex
work of writing incremental models. However,
updating operational outputs when the inputs
change is a delicate exercise of chaining
together a waterfall of loads, transforms,
and reverse ETL syncs.

 A fragile serving layer
The first thing every tool querying a CDW does
is cache the results. This is because the query
interface is just not designed for operational
use cases.

There are hard, low limits on query concurrency.
Point lookups (SELECT * FROM my_cached_
table WHERE user_id=123;) are costly and not
performant when queried directly from the CDW.
So, Redis it is. (And then you have to monitor and
worry about cache invalidation, which usually
adds a surprising amount of staleness.)

 Loaders optimized for infrequent updates
The problem also works its way into upstream
tools, services, and even APIs two degrees from
the analytical warehouse. Every loading service
is designed to build up a batch of updates and
merge it as infrequently as possible.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 9

But Materialize changes an analytical data warehouse’s constraints by swapping in an engine that
delivers real materialized views: continuously updated SQL views created via incremental computation.

Materialize also adds a serving layer that embraces high-frequency reads and proactively pushes
downstream systems updates. With these architectural changes, moving certain operational workloads
from the warehouse to Materialize can drive major improvements in:

 X Freshness - data freshness measured in seconds means use cases that were non-starters on data warehouses
are now possible.

 X Business Value - increasing data acts as a value multiplier on many use cases.

 X Cost Efficiency - due to the incremental model’s increased efficiency.

You can achieve similar gains, in theory, by switching to a stream processor. But that carries a steep
engineering cost that effectively involves developing your own streaming database.

When to use Materialize: Business use cases
As we’ve discussed, not every workload currently on your analytical data warehouse needs to move to an
operational data warehouse like Materialize. However, for those workloads that would benefit, moving to
Materialize will deliver increased performance with less effort at a lower price point.

To evaluate whether a warehouse workload is well-suited to Materialize, start with the underlying
business requirements: what service or capability does it need to deliver?

Your use case is a good candidate for Materialize if:

 It benefits from fresh data
Fresher data means less time between when the data first originates and when it is incorporated in the
results of SQL transformations in the warehouse.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 10

Example:
Transactional
emails must be
sent within a
minute of customer
action. Here, a
30-minute delay
would cause
confusion and
frustration.

Example: Fraud
detection that
operates on data
30 minutes out-of-
date is possible,
but not as valuable
as fraud detection
that operates on
data accurate up to
1 second ago.

Or data freshness can act as a value multiplier, where the value of data goes up as lag decreases:

A need for fresher data can manifest in hard latency budgets or thresholds,
above which the use case is not feasible:

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 11

 It’s well-served by a consistent, push-based system

Because Materialize uses dataflows to update results for each individual change to source data,
it’s the only warehouse that can efficiently push updates out (via SINKs). This means it can be wired
up to take action on behalf of the user exactly when it needs to.

Are you polling a view in your warehouse or running an evaluation at a set interval?
If so, you might be better served switching to a push-based model, like this:

1. Stream data in continuously via SOURCEs.

2. Define your “alert” or “trigger” criteria as a SQL view.

3. Materialize runs the source data (and all future changes to it) through dataflows to incrementally
update your view results.

4. As the results of your view change, Materialize writes the change out immediately
to a downstream system.

Today, Materialize writes changes to Kafka. We are also evaluating support for writing changes to other
destinations like Datadog and general HTTP endpoints, opening up an even broader and simpler set of
push use cases.

When to use Materialize: technical requirements
Workloads you meet should also fulfill one or more of the following technical requirements.

 Warehouse compute is always on, running a predictable workload

Predictable workloads are orchestrated or scheduled work like loading data and running SQL
transformations. This is work often handled by dbt run or Airflow versus the kind initiated by end-users.

Constantly running an analytical data warehouse for scheduled jobs is like paying an Uber driver for
eight hours a day instead of renting a car. Often, this happens when you’re running a batch load and
transformation workload hourly or more in a traditional data warehouse.

Why move? Presumably, you’re running something often because there is value in fresher data.
Unless you’re using very advanced dbt incremental models. You’re probably doing a significant
amount of inefficient recomputation of data that hasn’t changed since you last ran the query.

Materialize can deliver efficiency and cost savings by maintaining the same query incrementally,
as it only needs to compute the data that changes.

 Running into limits or complexity with dbt incremental materializations

Related to the point above, one optimization path that heavy warehouse users take is to convert their
table materializations to incremental materializations.

At first glance, this may seem like a good long-term solution. But experienced users, and even dbt
themselves, have much to say about the incremental models’ limitations.

Incremental models offload the responsibility of tracking which data can possibly change, and which
is truly append-only, to the user. This doesn’t just apply at the time of creation. It remains the user’s
responsibility as the schema evolves.

© 2024 Materialize Building an Operational Data Warehouse for Real-Time Analytics | 12

https://materialize.com/docs/get-started/key-concepts/#sinks
https://materialize.com/docs/get-started/key-concepts/#sources
https://airflow.apache.org/

Why move? Not all incremental materializations will magically work better in Materialize. If the scale of
the dataset is very large, Materialize may run into limits of its own. But porting an incremental model in
a traditional warehouse to a regular materialized view in Materialize equates to handing responsibility
for tracking what inputs might change back to the database. That saves data teams
a lot of time in debugging and maintenance.

 Data is slowed down before it enters the warehouse

Look at the sources of data you are using in the warehouse. Are you using a service to queue
continuous updates into a batch of changes better suited to load into the warehouse? This is a good
signal that Materialize can deliver a drop-in capability upgrade by processing the data as it arrives
and serving transformed results that are always up-to-date.

Why move? If you’re consuming streams with Kafka/Snowflake, CDC streams from your primary
transactional database, or analytics events coming from web, mobile, and server-side sources via
services like Segment, Snowplow, and Rudderstack, you may be able to gain performance (fresher
data), decrease costs (no separate loading service, less repetitive computation work in the compute
layer) and simplify your architecture using Materialize.

Conclusion
Overuse is the hallmark of a great technology. When a tool gives you superpowers, it’s natural to use it
for every new initiative.

For years, companies have struggled to fit operational data workloads within analytical data warehouses.
With an operational data warehouse like Materialize, you can leverage the upsides of an analytical data
warehouse for streaming workloads that require up-to-date data. You no longer have to choose between
freshness, ease of use, and a low price point.

What’s more, Materialize makes this possible using a simple programming model that users of analytical
data warehouses will find familiar. You can try it by signing up for a playground environment and running
the Materialize Quickstart.

Interested in building with live data?

materialize.com/register
© 2024 Materialize

Materialize is an Operational Data Warehouse: A cloud data warehouse with
streaming internals, built for work that needs action on what’s happening right now.

https://materialize.com/register/
https://materialize.com/docs/get-started/quickstart/
https://materialize.com/docs/get-started/quickstart/
https://materialize.com/register/
https://materialize.com/blog/operational-data-warehouse/

